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OBJECTIVES OF THIS LECTURE

By the end of this lecture, you will be able to:

• Systematically generate all objects of a finite family, called combinatorial 
objects (e.g., graphs, strings, permutations, cliques, cycles, etc.)

• Describe the Backtracking algorithm for generating combinatorial objects

• Specify and represent combinatorial objects of new combinatorial families 
in a generic, uniform way

• Leverage the common components of Backtracking, and devbelop the 
problem-specific part of the code for each separate (new) combinatorial 
family
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OUTLINE

• Background

• Combinatorial families and Combinatorial objects

• Definition and purpose of Backtracking

• Uniform representation of combinatorial objects: 
• General format

• Specifics for each of 8 combinatorial families

• Backtracking algorithm

• Implementation for each of the 8 combinatorial families
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BACKTRACKING
-- BACKGROUND AND DEFINITION --

• So far, we have focused on computing just one solution
to a given problem

• In certain situations, users may need to have all the 
solutions, like all graphs of a given size

• That is, a user may need all objects in a given finite family

• Finite objects of finite-size families are called 
combinatorial objects
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EXAMPLES OF COMBINATORIAL 
FAMILIES/OBJECTS

Combinatorial Family/Objects Size of the Family

All binary strings of n bits 2𝑛𝑛

All subsets of a given set E of n elements 2𝑛𝑛

All directed graphs of n nodes (self-loops ok) 2(𝑛𝑛2)

All undirected graphs of n nodes (no self-loops) 2
𝑛𝑛 𝑛𝑛−1

2

All Permutations of a size n 𝑛𝑛!
All Hamiltonian cycles of a given graph It depends on the graph. For a 

complete graph, it is 𝑛𝑛!
All k-cliques of a given graph It depends on the graph. For a 

complete graph, it is 
𝑛𝑛
𝑘𝑘

All k-colorings of a given graph It depends on the graph
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FINE POINTS
-- NON-COMBINATORIAL FAMILIES/OBJECTS --

• Would the family of weighted graphs be considered a 
finite combinatorial family? Why or why not?

• Would the family of continuous curves be considered 
combinatorial? Why or why not?

• Can you think of other examples of non-combinatorial 
families/objects?
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BACKTRACKING
-- DEFINITION AND PURPOSE --

• Definition: Backtracking is a systematic method for 
generating all objects of a given combinatorial family

• Typical application: Testing
• If you design an algorithm whose input is a combinatorial 

object of a certain family, and 
• you want to test the algorithm, 
• Then you need a fairly large sample of inputs to test your 

algorithm

CS 6212 Design and Analysis of Algorithms                                                                                    Backtracking

7



NOTE ON BACKTRACKING TIME COMPLEXITY

• As we will see, generating a single object is fairly fast

• But generating all the objects is prohibitively expensive

• That is because in most combinatorial families, the number of 
objects is huge (exponential)

• Therefore, in many Backtracking applications, only a subset of 
the objects is generated

• Like a random sample of objects
• Or the first N objects generated by Backtracking

• In this lecture, we ignore time complexity, and focus on how to 
generate all the objects in a given combinatorial family
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ALGORITHM, NOT TEMPLATE

• We will give an actual Backtracking algorithm that can 
apply to a large collection of combinatorial families

• Not a template, not a sequence of steps, 

• But an actual algorithm!

• To be able to have such a generic algorithm, we have to 
have a uniform representation of the combinatorial 
objects across many combinatorial families

• We’ll present that next
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UNIFORM REPRESENTATION OF
COMBINATORIAL OBJECTS

• In most of the combinatorial families we deal with:
• Each object in the family is represented by an array X[1:N] for some fixed N
• Each element of the array takes values from a finite domain 𝑆𝑆 = 𝑎𝑎1, 𝑎𝑎2, … , 𝑎𝑎𝑚𝑚 , for 

some fixed positive integer value 𝑚𝑚
• Often, 𝑆𝑆 consists of successive integers
• Examples: 𝑆𝑆 = 0,1 , or 𝑆𝑆 = {1,2, … , 𝑛𝑛}

• The values of array X must satisfy some constraints C so that X represents a 
legitimate object of the family in question 

• Each C-compliant instance of the whole array X[1:N] represents a single, 
separate,full object

• Each combinatorial family can be thus modeled as (X[1:N], S, C), where 
X[1:N] is meant to represent any single object of the family

• We will see what (X[1:N], S, C) is for each of the 8 aforementioned families 
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BINARY STRINGS

For a given positive integer n:
• Every n-bit binary string is represented by an array 

X[1:n], where X[i] is the ith bit of the binary string. So 
𝑁𝑁 = 𝑛𝑛.

• Example: For string=0110, X=[0,1,1,0]

• 𝑆𝑆 = 0,1 : X[i] takes its values from {0,1} for each i.
• 𝐶𝐶 = 𝜙𝜙: The constraints 𝐶𝐶 are empty because the values 

of the individual bits in a binary string are 
independent of one another
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N=n, S={0,1}, C=𝜙𝜙,
X[i] represents the ith

bit of the string 



SUBSETS OF A GIVEN SET

Given a set 𝐸𝐸 = {1,2, … ,𝑛𝑛}
• Every subset is represented by the bitmap (i.e., Boolean array) X[1:n];

• X i = �1 if i is in the subset being represented
0 if i is not in the subset being represented

• Example: n=4, 𝐸𝐸 = 1,2,3,4 . Take subset A={2,4}. 
• It is represented by array X=[0,1,0,1]. 

• X[1]=0 because 1 ∉ 𝐴𝐴, X[2]=1 because 2 ∈ 𝐴𝐴, etc. 

• 𝑆𝑆 = 0,1 : As just seen, every X[i] is 0 or 1.

• 𝐶𝐶 = 𝜙𝜙: The constraints are empty because whether i is an element of the 
subset has no bearing on whether j is an element of the subset. 

• Note: Abstractly, this problem is identical to the binary strings problem
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N=n, S={0,1}, C=𝜙𝜙,
X[i] represents if i is 
in the subset



DIRECTED GRAPHS

Given a positive integer n

• Every digraph of n nodes is representable by a 2D array 
A[1:n,1:n], which is the well-known adjacency matrix

• A[i,j]=1 if(i,j) is an edge; A[i,j]=0 if (i,j) is not an edge

• Example:
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1

5

4
3

2 𝐴𝐴 =

1 0 0 1 1
1 0 0 0 1
1 1 0 0 0
0 1 1 0 0
0 0 0 1 0



DIRECTED GRAPHS

Given a positive integer n
• Every digraph of n nodes is representable by a 2D array A[1:n,1:n], which is the well-

known adjacency matrix

• The values of the entries in the array are binary and independent of one another (why)

• The 2D array A can be represented by a 1D binary array X[1:N] where 𝑁𝑁 = 𝑛𝑛2

• Each X[i] is 0 or 1:      1 represents that the corresponding edge exists, 0 otherwise

• 𝑆𝑆 = 0,1 : As just seen, every X[i] is 0 or 1.

• 𝐶𝐶 = 𝜙𝜙: Because the values of entries of X (which are the entries of A) are independent

• Mapping from A[1:n,1:n] to X[1:𝑛𝑛2]: Stack the rows of A one after another. 

• Example: 𝐴𝐴 =
𝑎𝑎 𝑏𝑏 𝑐𝑐
𝑑𝑑 𝑒𝑒 𝑓𝑓
𝑔𝑔 ℎ 𝑖𝑖

⇒ 𝑋𝑋 = [𝑎𝑎 𝑏𝑏 𝑐𝑐 𝑑𝑑 𝑒𝑒 𝑓𝑓 𝑔𝑔 ℎ 𝑖𝑖]

• X[(i-1)n + j] = A[i,j]
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N=𝑛𝑛2, S={0,1}, C=𝜙𝜙,
X [(i-1)n + j] represents if (i,j) is an 
edge

Note: Abstractly, this problem is identical to the 
previous problem: binary strings, and subsets!!



UNDIRECTED GRAPHS
Given a positive integer n
• Every graph of n nodes is representable by a 2D adjacency matrix 

A[1:n,1:n], which is symmetric (i.e., A[i,j]=A[j,i] for all i and j)

• We can use the same 1D array representation X[1,N] where N=𝑛𝑛2

• 𝐶𝐶 = ∀𝑖𝑖, 𝑗𝑗 ,𝐴𝐴 𝑖𝑖, 𝑗𝑗 = 𝐴𝐴 𝑗𝑗, 𝑖𝑖 ; also, if no self-loops are allowed, 𝐴𝐴 𝑖𝑖, 𝑖𝑖 = 0 ∀𝑖𝑖

• But the simpler the constraints, the simpler and faster the algorithm.

• So, can we have a better representation (with simpler constraints)?
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• N=𝑛𝑛2, S={0,1}, 
• C: ∀𝑖𝑖, 𝑗𝑗 ,𝐴𝐴 𝑖𝑖, 𝑗𝑗 = 𝐴𝐴 𝑗𝑗, 𝑖𝑖 ; and 𝐴𝐴 𝑖𝑖, 𝑖𝑖 = 0 ∀𝑖𝑖
• X [(i-1)n + j] represents whether (i,j) is 

an edge or not
• C: ∀𝑖𝑖, 𝑗𝑗 , X [(i-1)n + j] = X[(j-1)n+i], and 

X[(i-1)n+i]=0 

1

5

4 3

2 𝐴𝐴 =

0 1 0 1 1
1 0 1 1 0
0 1 0 1 0
1 1 1 0 1
1 0 0 1 0



UNDIRECTED GRAPHS
-- A CONSTRAINT-FREE REPRESENTATION --

Given a positive integer n

• Every graph of n nodes is representable by a 2D binary adjacency matrix A[1:n,1:n], which is 
symmetric (i.e., A[i,j]=A[j,i] for all i and j)

• Since the top triangle is identical to the bottom triangle, and the diagonal is all zeros, capture 
only the top triangle, i.e., a graph can be represented by the top triangle only

• 𝐴𝐴 =

0 𝑎𝑎 𝑏𝑏 𝑐𝑐
𝑎𝑎 0 𝑑𝑑 𝑒𝑒
𝑏𝑏 𝑑𝑑 0 𝑓𝑓
𝑐𝑐 𝑒𝑒 𝑓𝑓 0

• To represent a graph with a 1D array X, map the top triangle to a linear array row-wise

• The 1D array representation: X[1,N] where N= 𝑛𝑛− 1 + 𝑛𝑛 − 2 +⋯+ 2 + 1 = 𝑛𝑛 𝑛𝑛−1
2

• 𝐶𝐶 = 𝜙𝜙: Because whether an undirected pair of nodes is an edge has no bearing on whether 
another undirected pair of nodes is an edge.
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𝐴𝐴 =

0 𝑎𝑎 𝑏𝑏 𝑐𝑐
𝑎𝑎 0 𝑑𝑑 𝑒𝑒
𝑏𝑏 𝑑𝑑 0 𝑓𝑓
𝑐𝑐 𝑒𝑒 𝑓𝑓 0

⇒ 𝑋𝑋 = [𝑎𝑎 𝑏𝑏 𝑐𝑐 𝑑𝑑 𝑒𝑒 𝑓𝑓]

N=𝑛𝑛 𝑛𝑛−1
2

,  S={0,1}, 𝐶𝐶 = 𝜙𝜙
X [k] represents if (i,j) is an edge. What is k in terms of (i,j)?



PERMUTATIONS
Given a positive integer n (i.e., a set E={1,2,…,n})

• Definition: A permutation is a one-to-one and onto mapping 
(function) f from E to E. The mapping of element i is denoted f(i)

• Another definition: A permutation is a re-ordering (re-
arrangement) of the elements 1,2,...,n

• A third definition: A permutation is a one-to-one matching. 
• i is said to be matched with f(i).

• Math representation of a permutation: f = 1 2 3 … 𝑖𝑖 … 𝑛𝑛
2 4 1 … 𝑓𝑓 𝑖𝑖 …𝑓𝑓(𝑛𝑛)

where the top row is 1, 2, … , n; and the value under i is f(i)
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PERMUTATION REPRESENTATION

• A permutation f can be represented by a 1D array X[1:n] 
where X[i]=f(i).

• Example:

• n=4, f = 1 2 3 4
2 4 1 3 , 𝑖𝑖. 𝑒𝑒. ,𝑓𝑓 1 = 2,𝑓𝑓 2 = 4,𝑓𝑓 3 = 1,𝑓𝑓 4 = 3,

• X=[2 4 1 3], i.e., the bottom row.

• 𝑆𝑆 = {1,2, … ,𝑛𝑛}: X[i] can be any value 1, 2, … , or n.

• 𝐶𝐶:∀𝑖𝑖 ≠ 𝑗𝑗,𝑋𝑋 𝑖𝑖 ≠ 𝑋𝑋 𝑗𝑗 : By def, the bottom row of f is a re-arrangement 
of the top row => no two values in bottom row can be equal.

CS 6212 Design and Analysis of Algorithms                                                                                    Backtracking

18

N=𝑛𝑛; S={1,2,…,n}; 𝐶𝐶:∀𝑖𝑖 ≠ 𝑗𝑗,𝑋𝑋 𝑖𝑖 ≠ 𝑋𝑋 𝑗𝑗
X [i] represents f(i)



HAMILTONIAN CYCLES
-- DEFINITION AND EXAMPLES --

• Given an undirected graph G (of n nodes)

• Definition: a Hamiltonian cycle of G is any cycle that goes 
through every node of G exactly once. Thus a HC has all the n 
nodes, in some arrangement.

• Note that not all graphs have Hamiltonian cycles
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There are no Hamiltonian cycles 
in this graph. Why?

4

1

5 3

2

HC 1: 1, 2, 3, 4, 5,  and back to 1
HC 2: 1, 3, 5, 2, 4, and back to 1
There are many more HCs

1

5

4 3

2



HAMILTONIAN CYCLES
-- UNIFORM REPRESENTATION --

Given a graph G(V,E) of n nodes:

• A Hamiltonian cycle (of n nodes) can be represented by 
X[1:n] where X[i] is the ith node of the cycle

• 𝑆𝑆 = {1,2, … ,𝑛𝑛}:  X[i] can be any of the nodes 1, 2, … , n.

• 𝐶𝐶:∀𝑖𝑖 ≠ 𝑗𝑗,𝑋𝑋 𝑖𝑖 ≠ 𝑋𝑋 𝑗𝑗 , and ∀𝑖𝑖 𝑋𝑋 𝑖𝑖 ,𝑋𝑋 𝑖𝑖 + 1 ∈ 𝐸𝐸, and 
𝑋𝑋 𝑛𝑛 ,𝑋𝑋 1 ∈ 𝐸𝐸
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N=𝑛𝑛; S={1,2,…,n}; 
𝐶𝐶:∀𝑖𝑖 ≠ 𝑗𝑗,𝑋𝑋 𝑖𝑖 ≠ 𝑋𝑋 𝑗𝑗 ; ∀𝑖𝑖 𝑋𝑋 𝑖𝑖 ,𝑋𝑋 𝑖𝑖 + 1 ∈ 𝐸𝐸; 𝑋𝑋 𝑛𝑛 ,𝑋𝑋 1 ∈ 𝐸𝐸
X [i] represents the ith node of the cycle



K-CLIQUES
-- DEFINITION AND EXAMPLES --

• Given an undirected graph G (of 𝑛𝑛 nodes) and a positive 
integer k ≤ 𝑛𝑛

• Definition: A k-clique of G is a subset of k nodes where every 
pair of those nodes are adjacent in G.

• Note that not all graphs have k-cliques
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2-cliques: {1,2}, {1,3}, {4,5}, …
3-cliques: {1,2,3}, {1,4,5}
4-cliques: None
5-cliques: None

4

1

5 3

2

3-cliques: {1,2,3},  {5,3,4}, etc.
4-cliques: {1,2,3,4}, {1,2,3,5}, {2,3,4,5], …
5-clique: {1,2,3,4,5} 

1

5

4 3

2



K-CLIQUES
-- UNIFORM REPRESENTATION --

Given a graph G(V,E) of n nodes, and a positive integer 
k ≤ 𝑛𝑛

• A k-clique (of k nodes) can be represented by X[1:k] 
where X[i] is the ith node of the clique

• 𝑆𝑆 = {1,2, … ,𝑛𝑛}:  X[i] can be any of the nodes 1, 2, … , n.

• 𝐶𝐶:∀𝑖𝑖 ≠ 𝑗𝑗,𝑋𝑋 𝑖𝑖 ≠ 𝑋𝑋 𝑗𝑗 and 𝑋𝑋 𝑖𝑖 ,𝑋𝑋 𝑗𝑗 ∈ 𝐸𝐸
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N=k; S={1,2,…,n}; 
𝐶𝐶:∀𝑖𝑖 ≠ 𝑗𝑗𝑗𝑗 𝑖𝑖 ≠ 𝑋𝑋 𝑗𝑗 and 𝑋𝑋 𝑖𝑖 ,𝑋𝑋 𝑗𝑗 ∈ 𝐸𝐸
X [i] represents the ith node of the clique



K-COLORING
-- DEFINITION AND EXAMPLES --

• Given an undirected graph G (of 𝑛𝑛 nodes) and a positive 
integer k ≤ 𝑛𝑛 of colors 

• Definition: A k-coloring of G is an assignment of a color to 
each node in such a way that every two neighboring nodes 
have distinct colors, and the total number of colors used is ≤k.
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2-coloring: None
3-coloring: As shown in the picture

4

1

5 3

2

This graph has no 3-coloring, no 4-
coloring, but has a 5-coloring (as shown 
in the figure)

1

5

4 3

2



K-COLORING
-- UNIFORM REPRESENTATION --

Given a graph G(V,E) of n nodes, and a positive integer 
𝑘𝑘 ≤ 𝑛𝑛 of colors (we can label the colors 1, 2, …, 𝑘𝑘)

• A k-coloring of G can be represented by X[1:n] where 
X[i] is the color of node i

• 𝑆𝑆 = {1,2, … ,𝑘𝑘}:  X[i] can be any of the color1, 2, … , 𝑘𝑘.

• 𝐶𝐶:∀(i,j) ∈ E, X[i] ≠ X[j]
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N=n; S={1,2,…,k};  𝐶𝐶:∀(i,j) ∈ E, X[i] ≠ X[j]
X [i] represents the color of node i



LESSONS LEARNED SO FAR

• Backtracking is for generating combinatorial objects in finite families

• Backtracking is more than a template/technique: it is an algorithm

• For many combinatorial  families, we can represent the objects with a 
uniform representation: (X[1:N], S, C). This allows having a shared 
Backtracking algorithm

• Even when the natural representation is not 1D arrays, one can map the 
natural representation to a 1D array so the Backtracking algorithm can 
apply with minimum effort

• Constraints can be simplified if we reduce/eliminate representation-
redundancy (and thus inter-dependencies)

• More lessons to come
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BACKTRACKING ALGORITHM
-- PRELIMINARIES (1/3) --

• The algorithm will generate all valid arrays X[1:N] whose 
elements come from the domain 𝑆𝑆 = 𝑎𝑎1, 𝑎𝑎2, … ,𝑎𝑎𝑚𝑚 of successive 
integers, such that the constraints C are satisfied.

• The algorithm is a depth-first search like traversal (or 
generation) of the tree that represents the entire solution space.

• In the tree:
• the root designates the starting point
• every path from the root to a leaf is of length N, where the node 

in level i specifies a value for element X[i]
• The whole path corresponds to the whole array and represents 

a single solution, that is, a single object.
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BACKTRACKING ALGORITHM
-- PRELIMINARIES (2/3) --

• During the generation of the tree, when we are to create a new 
node corresponding to X[i], we try to assign X[i] the next domain 
value (given the current value of X[i] as reference).

• If that value does not violate the constraints C, it is assigned.

• If, on the other hand, that value violates C, the next value after that is 
tried, and so on until either a C-compliant value is found or all 
remaining values are exhausted.

• If a C-compliant value is found and assigned to X[i], we move to the 
next level to find a value for X[i+1].

• If no C-compliant remaining value is found for X[i], we backtrack (i.e., 
go back) to the previous level to find a new value for X[i-1].
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BACKTRACKING ALGORITHM
-- PRELIMINARIES (3/3) --

• When we backtrack to the root, the whole tree has been fully generated, 
and the algorithm stops

• Whenever a C-compliant value for X[n] is found, a complete new object 
has been generated, and the path from the root to that node 
corresponding to X[n] is printed out as the object

• Recall that in the algorithm, when a new node for a new value for X[i] is 
being generated, the values that are tried are the "next" values (in S) 
from a reference value, which is the current value of X[i]

• To be consistent with the previous bullet, let the reference value at the 
outset be initialized be a value 𝑎𝑎0 ≝ 𝑎𝑎1 − 1

• That way, the next value is always the reference (current) value + 1.
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ILLUSTRATION OF THE ALGORITHM
-- ON PERMUTATIONS OF SIZE 3 --
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Start

X[1]=1

X[2]=1 X[2]=2

X[3]=1 X[3]=2 X[3]=3

X[2]=3

X[3]=1 X[3]=2 X[3]=3

X[1]=2

X[2]=1 X[2]=2 X[2]=3

X[3]=1 X[3]=2 X[3]=3 X[3]=1 X[3]=2 X[3]=3

X[1]=3

X[2]=1 X[2]=2 X[2]=3

X[3]=1 X[3]=2 X[3]=3

X[3]=1 X[3]=2 X[3]=3

Red nodes are dead-ends (violate C)
Green nodes are valid solutions
Blue nodes are valid intermediate nodes



BACKTRACKING ALGORITHM
-- THE PSEUDO-CODE--
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Procedure Backtrack()
begin

int r := 1;  //r is the tree level, index of X
int X[1:N]; 
for i=1 to N do:  X[i] := 𝒂𝒂𝟎𝟎;  endfor // initialize X
while r > 0 do 

getnext(X,r);  
// assigns to X[r] its next C-compliant value, 
// if available; else, it re-initlizes X[r] to 𝒂𝒂𝟎𝟎
if (X[r] == 𝒂𝒂𝟎𝟎) then

r := r-1; //backtrack to the previous level
elseif r==N then

print(X[1:N]);  //a new complete solution
else
r := r+1;  //move to the next level for X[r+1]

endif
endwhile

end // Backtrack

Procedure getnext(in/out: X[1:N]; in: r)
Begin

X[r] := X[r] + 1;  // next tentative value
while (X[r] <= 𝒂𝒂𝒎𝒎) do

if (Bound(X[1:N],r) is true) then
return; // new value for X[r] is found

else   // try the next value in S
X[r] := X[r] + 1;

endif
endwhile
// if getnext has not returned, that 
// means no C-compliant remaining
// value was found. Re-initialize X[r]
X[r] := 𝒂𝒂𝟎𝟎;

end

• Bound(X[1:N],r) checks if the value of X[r] is 
C-compliant, and if so, returns true

• Bound assumes X[1:r-1] are C-compliant
• The code for Bound varies from problem to 

problem 



WHAT YOU NEED TO DO WHEN SOLVING A 
BACKTRACKING PROBLEM

1. Derive the uniform representation (X[1:N], S, C)
• Give the value of N
• Specify the domain S (i.e., give {𝑎𝑎1,𝑎𝑎2, … ,𝑎𝑎𝑚𝑚}), and 𝑎𝑎0
• Describe what every X[i] means/signifies 
• Present the constraints C in a logical manner

2. Give the pseudocode for Bound(…)

3. Copy the code for Backtrack() and getnext(…), 
replacing the values of N, 𝑎𝑎0, and 𝑎𝑎𝑚𝑚 by their 
appropriate values
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THE BOUND FUNCTIONS FOR THE 8 PROBLEMS

• For each of our 8 combinatorial families,
• The model (X[1:N], S, C) has been given

• What remains is to give the Bound function

• We will do so next
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BOUND FOR THE FIRST 4 FAMILIS

• For the first 4 families (binary strings, subsets of a 
given set, directed graphs, undirected graphs):

• 𝐶𝐶 = 𝜙𝜙 ⇒ there are no constraints to comply with 

• Therefore, the Bound function should allows return true:
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Function Bound(X[1:N]; r)
begin

return true;
end Bound

• Binary Strings: N=n
• Subsets: N=n
• Directed Graphs:  N=𝑛𝑛2

• Undirected graphs: N=𝑁𝑁 = 𝑛𝑛 𝑛𝑛−1
2

• For all four families: S={0,1}, 𝑎𝑎0 = −1,𝑎𝑎1 = 0,
𝑎𝑎2 = 1



BOUND FOR PERMUTATIONS
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N=𝑛𝑛; S={1,2,…,n}; X [i] represents f(i)
𝐶𝐶:∀𝑖𝑖 ≠ 𝑗𝑗, 𝑋𝑋 𝑖𝑖 ≠ 𝑋𝑋 𝑗𝑗
𝑎𝑎0 = 0,𝑚𝑚 = 𝑛𝑛, 𝑎𝑎𝑚𝑚 = 𝑛𝑛

Function Bound(X[1:n],r)
begin

// X[1:r-1] have C-compliant values. Bound checks to see if X[r] is C-compliant.
for i=1 to r-1 do

if X[r] == X[i] then // violates C: no two X values can be equal
return(false); 

endif
endfor
// If we reach here without returning, the value of X[r] doesn’t violate C
return(true);

end Bound



BOUND FOR HAMILTONIAN CYCLES
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N=𝑛𝑛; S={1,2,…,n}; 
X [i] represents the ith node in the HC
𝐶𝐶:∀𝑖𝑖 ≠ 𝑗𝑗, 𝑋𝑋 𝑖𝑖 ≠ 𝑋𝑋 𝑗𝑗 ; ∀𝑖𝑖 𝑋𝑋 𝑖𝑖 ,𝑋𝑋 𝑖𝑖 + 1 ∈ 𝐸𝐸; 𝑋𝑋 𝑛𝑛 , 𝑋𝑋 1 ∈ 𝐸𝐸
𝑎𝑎0 = 0,𝑚𝑚 = 𝑛𝑛, 𝑎𝑎𝑚𝑚 = 𝑛𝑛

Function Bound(X[1:n],r)
begin

// X[1:r-1] have C-compliant values. Bound checks to see if X[r] is C-compliant.
// next, check for violations that could be incurred by X[r]
for i=1 to r-1 do

if X[r] == X[i] then return(false); endif
endfor
if (r > 1 and (X[r-1],X[r]) is not an edge) then   return(false);   endif
if (r==n and (X[n],X[1]) is not an edge) then return(false);   endif
return(true) ;

end Bound



BOUND FOR K-CLIQUES
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N=𝑛𝑛; S={1,2,…,n}; 
X [i] represents the ith node in the HC
𝐶𝐶:∀𝑖𝑖 ≠ 𝑗𝑗, 𝑋𝑋 𝑖𝑖 ≠ 𝑋𝑋 𝑗𝑗 and 𝑋𝑋 𝑖𝑖 ,𝑋𝑋 𝑗𝑗 ∈ 𝐸𝐸;
𝑎𝑎0 = 0,𝑚𝑚 = 𝑛𝑛, 𝑎𝑎𝑚𝑚 = 𝑛𝑛

Function Bound(X[1:n],r)
begin

// X[1:r-1] have C-compliant values. Bound checks to see if X[r] is C-compliant.
// next, check for violations that could be incurred by X[r]
for i=1 to r-1 do

if (X[r] == X[i] or (X[r],X[i]) is not an edge)  then
return(false); 

endif
endfor
return(true) ;

end Bound



BOUND FOR K-COLORING
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N=𝑛𝑛; S={1,2,…,k}; 
X [i] represents the color of node i
𝐶𝐶:∀(i,j) ∈ E, X[i] ≠ X[j]
𝑎𝑎0 = 0,𝑚𝑚 = 𝑘𝑘,𝑎𝑎𝑚𝑚 = 𝑘𝑘

Function Bound(X[1:n],r)
begin

// X[1:r-1] have C-compliant values. Bound checks to see if X[r] is C-compliant.
// next, check for violations that could be incurred by X[r]
for i=1 to r-1 do

if ((r,i) is an edge and X[r] == X[i] ) then
return(false); 

endif
endfor
return(true) ;

end Bound



LESSONS LEARNED SO FAR
• Backtracking is for generating combinatorial objects in finite families

• Backtracking is more than a template/technique: it is an algorithm

• For many combinatorial families, we can represent the objects with a uniform 
representation: (X[1:N], S, C). This allows having a shared Backtracking algorithm

• Even when the natural representation is not 1D arrays, one can map the natural 
representation to a 1D array so the Backtracking algorithm can apply with minimum 
effort

• Constraints can be simplified if we reduce/eliminate representation-redundancy (and 
thus inter-dependencies)

• The uniform representation and the Bound function are all you need to do for a new 
Backtracking problem

• The simpler the constraints are, the easier and the simpler the Bound function is
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OTHER BACKTRACKING PROBLEMS

• Generate all directed graphs of n nodes and p edges

• Generate all regular undirected n-node graphs of degree d (where 
regular means that all the nodes have the same degree), for a given n 
and d

• Generate all undirected n-node graphs where the degree of every node 
is ≤ d, for a given n and d

• Generate k-letter strings, for a given k, where each letter is any of the 26 
lower case English letters

• Generate k-digit numbers where the k digits are in strictly increasing 
order (meaning that the ith digit is < then the digit after it, for all i)
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NEXT LECTURE

• Branch and Bound

• A last-resort optimization technique
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