
CS 6212 DESIGN AND
ANALYSIS OF
ALGORITHMS

LECTURE: BACKTRACKING

Instructor: Abdou Youssef

CS 6212 Design and Analysis of Algorithms Backtracking

1

OBJECTIVES OF THIS LECTURE

By the end of this lecture, you will be able to:

• Systematically generate all objects of a finite family, called combinatorial
objects (e.g., graphs, strings, permutations, cliques, cycles, etc.)

• Describe the Backtracking algorithm for generating combinatorial objects

• Specify and represent combinatorial objects of new combinatorial families
in a generic, uniform way

• Leverage the common components of Backtracking, and devbelop the
problem-specific part of the code for each separate (new) combinatorial
family

CS 6212 Design and Analysis of Algorithms Backtracking

2

OUTLINE

• Background

• Combinatorial families and Combinatorial objects

• Definition and purpose of Backtracking

• Uniform representation of combinatorial objects:
• General format

• Specifics for each of 8 combinatorial families

• Backtracking algorithm

• Implementation for each of the 8 combinatorial families

CS 6212 Design and Analysis of Algorithms Backtracking

3

BACKTRACKING
-- BACKGROUND AND DEFINITION --

• So far, we have focused on computing just one solution
to a given problem

• In certain situations, users may need to have all the
solutions, like all graphs of a given size

• That is, a user may need all objects in a given finite family

• Finite objects of finite-size families are called
combinatorial objects

CS 6212 Design and Analysis of Algorithms Backtracking

4

EXAMPLES OF COMBINATORIAL
FAMILIES/OBJECTS

Combinatorial Family/Objects Size of the Family

All binary strings of n bits 2𝑛𝑛

All subsets of a given set E of n elements 2𝑛𝑛

All directed graphs of n nodes (self-loops ok) 2(𝑛𝑛2)

All undirected graphs of n nodes (no self-loops) 2
𝑛𝑛 𝑛𝑛−1

2

All Permutations of a size n 𝑛𝑛!
All Hamiltonian cycles of a given graph It depends on the graph. For a

complete graph, it is 𝑛𝑛!
All k-cliques of a given graph It depends on the graph. For a

complete graph, it is
𝑛𝑛
𝑘𝑘

All k-colorings of a given graph It depends on the graph

CS 6212 Design and Analysis of Algorithms Backtracking

5

FINE POINTS
-- NON-COMBINATORIAL FAMILIES/OBJECTS --

• Would the family of weighted graphs be considered a
finite combinatorial family? Why or why not?

• Would the family of continuous curves be considered
combinatorial? Why or why not?

• Can you think of other examples of non-combinatorial
families/objects?

CS 6212 Design and Analysis of Algorithms Backtracking

6

BACKTRACKING
-- DEFINITION AND PURPOSE --

• Definition: Backtracking is a systematic method for
generating all objects of a given combinatorial family

• Typical application: Testing
• If you design an algorithm whose input is a combinatorial

object of a certain family, and
• you want to test the algorithm,
• Then you need a fairly large sample of inputs to test your

algorithm

CS 6212 Design and Analysis of Algorithms Backtracking

7

NOTE ON BACKTRACKING TIME COMPLEXITY

• As we will see, generating a single object is fairly fast

• But generating all the objects is prohibitively expensive

• That is because in most combinatorial families, the number of
objects is huge (exponential)

• Therefore, in many Backtracking applications, only a subset of
the objects is generated

• Like a random sample of objects
• Or the first N objects generated by Backtracking

• In this lecture, we ignore time complexity, and focus on how to
generate all the objects in a given combinatorial family

CS 6212 Design and Analysis of Algorithms Backtracking

8

ALGORITHM, NOT TEMPLATE

• We will give an actual Backtracking algorithm that can
apply to a large collection of combinatorial families

• Not a template, not a sequence of steps,

• But an actual algorithm!

• To be able to have such a generic algorithm, we have to
have a uniform representation of the combinatorial
objects across many combinatorial families

• We’ll present that next

CS 6212 Design and Analysis of Algorithms Backtracking

9

UNIFORM REPRESENTATION OF
COMBINATORIAL OBJECTS

• In most of the combinatorial families we deal with:
• Each object in the family is represented by an array X[1:N] for some fixed N
• Each element of the array takes values from a finite domain 𝑆𝑆 = 𝑎𝑎1, 𝑎𝑎2, … , 𝑎𝑎𝑚𝑚 , for

some fixed positive integer value 𝑚𝑚
• Often, 𝑆𝑆 consists of successive integers
• Examples: 𝑆𝑆 = 0,1 , or 𝑆𝑆 = {1,2, … , 𝑛𝑛}

• The values of array X must satisfy some constraints C so that X represents a
legitimate object of the family in question

• Each C-compliant instance of the whole array X[1:N] represents a single,
separate,full object

• Each combinatorial family can be thus modeled as (X[1:N], S, C), where
X[1:N] is meant to represent any single object of the family

• We will see what (X[1:N], S, C) is for each of the 8 aforementioned families

CS 6212 Design and Analysis of Algorithms Backtracking

10

BINARY STRINGS

For a given positive integer n:
• Every n-bit binary string is represented by an array

X[1:n], where X[i] is the ith bit of the binary string. So
𝑁𝑁 = 𝑛𝑛.

• Example: For string=0110, X=[0,1,1,0]

• 𝑆𝑆 = 0,1 : X[i] takes its values from {0,1} for each i.
• 𝐶𝐶 = 𝜙𝜙: The constraints 𝐶𝐶 are empty because the values

of the individual bits in a binary string are
independent of one another

CS 6212 Design and Analysis of Algorithms Backtracking

11

N=n, S={0,1}, C=𝜙𝜙,
X[i] represents the ith

bit of the string

SUBSETS OF A GIVEN SET

Given a set 𝐸𝐸 = {1,2, … ,𝑛𝑛}
• Every subset is represented by the bitmap (i.e., Boolean array) X[1:n];

• X i = �1 if i is in the subset being represented
0 if i is not in the subset being represented

• Example: n=4, 𝐸𝐸 = 1,2,3,4 . Take subset A={2,4}.
• It is represented by array X=[0,1,0,1].

• X[1]=0 because 1 ∉ 𝐴𝐴, X[2]=1 because 2 ∈ 𝐴𝐴, etc.

• 𝑆𝑆 = 0,1 : As just seen, every X[i] is 0 or 1.

• 𝐶𝐶 = 𝜙𝜙: The constraints are empty because whether i is an element of the
subset has no bearing on whether j is an element of the subset.

• Note: Abstractly, this problem is identical to the binary strings problem

CS 6212 Design and Analysis of Algorithms Backtracking

12

N=n, S={0,1}, C=𝜙𝜙,
X[i] represents if i is
in the subset

DIRECTED GRAPHS

Given a positive integer n

• Every digraph of n nodes is representable by a 2D array
A[1:n,1:n], which is the well-known adjacency matrix

• A[i,j]=1 if(i,j) is an edge; A[i,j]=0 if (i,j) is not an edge

• Example:

CS 6212 Design and Analysis of Algorithms Backtracking

13

1

5

4
3

2 𝐴𝐴 =

1 0 0 1 1
1 0 0 0 1
1 1 0 0 0
0 1 1 0 0
0 0 0 1 0

DIRECTED GRAPHS

Given a positive integer n
• Every digraph of n nodes is representable by a 2D array A[1:n,1:n], which is the well-

known adjacency matrix

• The values of the entries in the array are binary and independent of one another (why)

• The 2D array A can be represented by a 1D binary array X[1:N] where 𝑁𝑁 = 𝑛𝑛2

• Each X[i] is 0 or 1: 1 represents that the corresponding edge exists, 0 otherwise

• 𝑆𝑆 = 0,1 : As just seen, every X[i] is 0 or 1.

• 𝐶𝐶 = 𝜙𝜙: Because the values of entries of X (which are the entries of A) are independent

• Mapping from A[1:n,1:n] to X[1:𝑛𝑛2]: Stack the rows of A one after another.

• Example: 𝐴𝐴 =
𝑎𝑎 𝑏𝑏 𝑐𝑐
𝑑𝑑 𝑒𝑒 𝑓𝑓
𝑔𝑔 ℎ 𝑖𝑖

⇒ 𝑋𝑋 = [𝑎𝑎 𝑏𝑏 𝑐𝑐 𝑑𝑑 𝑒𝑒 𝑓𝑓 𝑔𝑔 ℎ 𝑖𝑖]

• X[(i-1)n + j] = A[i,j]

CS 6212 Design and Analysis of Algorithms Backtracking

14

N=𝑛𝑛2, S={0,1}, C=𝜙𝜙,
X [(i-1)n + j] represents if (i,j) is an
edge

Note: Abstractly, this problem is identical to the
previous problem: binary strings, and subsets!!

UNDIRECTED GRAPHS
Given a positive integer n
• Every graph of n nodes is representable by a 2D adjacency matrix

A[1:n,1:n], which is symmetric (i.e., A[i,j]=A[j,i] for all i and j)

• We can use the same 1D array representation X[1,N] where N=𝑛𝑛2

• 𝐶𝐶 = ∀𝑖𝑖, 𝑗𝑗 ,𝐴𝐴 𝑖𝑖, 𝑗𝑗 = 𝐴𝐴 𝑗𝑗, 𝑖𝑖 ; also, if no self-loops are allowed, 𝐴𝐴 𝑖𝑖, 𝑖𝑖 = 0 ∀𝑖𝑖

• But the simpler the constraints, the simpler and faster the algorithm.

• So, can we have a better representation (with simpler constraints)?

CS 6212 Design and Analysis of Algorithms Backtracking

15

• N=𝑛𝑛2, S={0,1},
• C: ∀𝑖𝑖, 𝑗𝑗 ,𝐴𝐴 𝑖𝑖, 𝑗𝑗 = 𝐴𝐴 𝑗𝑗, 𝑖𝑖 ; and 𝐴𝐴 𝑖𝑖, 𝑖𝑖 = 0 ∀𝑖𝑖
• X [(i-1)n + j] represents whether (i,j) is

an edge or not
• C: ∀𝑖𝑖, 𝑗𝑗 , X [(i-1)n + j] = X[(j-1)n+i], and

X[(i-1)n+i]=0

1

5

4 3

2 𝐴𝐴 =

0 1 0 1 1
1 0 1 1 0
0 1 0 1 0
1 1 1 0 1
1 0 0 1 0

UNDIRECTED GRAPHS
-- A CONSTRAINT-FREE REPRESENTATION --

Given a positive integer n

• Every graph of n nodes is representable by a 2D binary adjacency matrix A[1:n,1:n], which is
symmetric (i.e., A[i,j]=A[j,i] for all i and j)

• Since the top triangle is identical to the bottom triangle, and the diagonal is all zeros, capture
only the top triangle, i.e., a graph can be represented by the top triangle only

• 𝐴𝐴 =

0 𝑎𝑎 𝑏𝑏 𝑐𝑐
𝑎𝑎 0 𝑑𝑑 𝑒𝑒
𝑏𝑏 𝑑𝑑 0 𝑓𝑓
𝑐𝑐 𝑒𝑒 𝑓𝑓 0

• To represent a graph with a 1D array X, map the top triangle to a linear array row-wise

• The 1D array representation: X[1,N] where N= 𝑛𝑛− 1 + 𝑛𝑛 − 2 +⋯+ 2 + 1 = 𝑛𝑛 𝑛𝑛−1
2

• 𝐶𝐶 = 𝜙𝜙: Because whether an undirected pair of nodes is an edge has no bearing on whether
another undirected pair of nodes is an edge.

CS 6212 Design and Analysis of Algorithms Backtracking

16

𝐴𝐴 =

0 𝑎𝑎 𝑏𝑏 𝑐𝑐
𝑎𝑎 0 𝑑𝑑 𝑒𝑒
𝑏𝑏 𝑑𝑑 0 𝑓𝑓
𝑐𝑐 𝑒𝑒 𝑓𝑓 0

⇒ 𝑋𝑋 = [𝑎𝑎 𝑏𝑏 𝑐𝑐 𝑑𝑑 𝑒𝑒 𝑓𝑓]

N=𝑛𝑛 𝑛𝑛−1
2

, S={0,1}, 𝐶𝐶 = 𝜙𝜙
X [k] represents if (i,j) is an edge. What is k in terms of (i,j)?

PERMUTATIONS
Given a positive integer n (i.e., a set E={1,2,…,n})

• Definition: A permutation is a one-to-one and onto mapping
(function) f from E to E. The mapping of element i is denoted f(i)

• Another definition: A permutation is a re-ordering (re-
arrangement) of the elements 1,2,...,n

• A third definition: A permutation is a one-to-one matching.
• i is said to be matched with f(i).

• Math representation of a permutation: f = 1 2 3 … 𝑖𝑖 … 𝑛𝑛
2 4 1 … 𝑓𝑓 𝑖𝑖 …𝑓𝑓(𝑛𝑛)

where the top row is 1, 2, … , n; and the value under i is f(i)

CS 6212 Design and Analysis of Algorithms Backtracking

17

PERMUTATION REPRESENTATION

• A permutation f can be represented by a 1D array X[1:n]
where X[i]=f(i).

• Example:

• n=4, f = 1 2 3 4
2 4 1 3 , 𝑖𝑖. 𝑒𝑒. ,𝑓𝑓 1 = 2,𝑓𝑓 2 = 4,𝑓𝑓 3 = 1,𝑓𝑓 4 = 3,

• X=[2 4 1 3], i.e., the bottom row.

• 𝑆𝑆 = {1,2, … ,𝑛𝑛}: X[i] can be any value 1, 2, … , or n.

• 𝐶𝐶:∀𝑖𝑖 ≠ 𝑗𝑗,𝑋𝑋 𝑖𝑖 ≠ 𝑋𝑋 𝑗𝑗 : By def, the bottom row of f is a re-arrangement
of the top row => no two values in bottom row can be equal.

CS 6212 Design and Analysis of Algorithms Backtracking

18

N=𝑛𝑛; S={1,2,…,n}; 𝐶𝐶:∀𝑖𝑖 ≠ 𝑗𝑗,𝑋𝑋 𝑖𝑖 ≠ 𝑋𝑋 𝑗𝑗
X [i] represents f(i)

HAMILTONIAN CYCLES
-- DEFINITION AND EXAMPLES --

• Given an undirected graph G (of n nodes)

• Definition: a Hamiltonian cycle of G is any cycle that goes
through every node of G exactly once. Thus a HC has all the n
nodes, in some arrangement.

• Note that not all graphs have Hamiltonian cycles

CS 6212 Design and Analysis of Algorithms Backtracking

19

There are no Hamiltonian cycles
in this graph. Why?

4

1

5 3

2

HC 1: 1, 2, 3, 4, 5, and back to 1
HC 2: 1, 3, 5, 2, 4, and back to 1
There are many more HCs

1

5

4 3

2

HAMILTONIAN CYCLES
-- UNIFORM REPRESENTATION --

Given a graph G(V,E) of n nodes:

• A Hamiltonian cycle (of n nodes) can be represented by
X[1:n] where X[i] is the ith node of the cycle

• 𝑆𝑆 = {1,2, … ,𝑛𝑛}: X[i] can be any of the nodes 1, 2, … , n.

• 𝐶𝐶:∀𝑖𝑖 ≠ 𝑗𝑗,𝑋𝑋 𝑖𝑖 ≠ 𝑋𝑋 𝑗𝑗 , and ∀𝑖𝑖 𝑋𝑋 𝑖𝑖 ,𝑋𝑋 𝑖𝑖 + 1 ∈ 𝐸𝐸, and
𝑋𝑋 𝑛𝑛 ,𝑋𝑋 1 ∈ 𝐸𝐸

CS 6212 Design and Analysis of Algorithms Backtracking

20

N=𝑛𝑛; S={1,2,…,n};
𝐶𝐶:∀𝑖𝑖 ≠ 𝑗𝑗,𝑋𝑋 𝑖𝑖 ≠ 𝑋𝑋 𝑗𝑗 ; ∀𝑖𝑖 𝑋𝑋 𝑖𝑖 ,𝑋𝑋 𝑖𝑖 + 1 ∈ 𝐸𝐸; 𝑋𝑋 𝑛𝑛 ,𝑋𝑋 1 ∈ 𝐸𝐸
X [i] represents the ith node of the cycle

K-CLIQUES
-- DEFINITION AND EXAMPLES --

• Given an undirected graph G (of 𝑛𝑛 nodes) and a positive
integer k ≤ 𝑛𝑛

• Definition: A k-clique of G is a subset of k nodes where every
pair of those nodes are adjacent in G.

• Note that not all graphs have k-cliques

CS 6212 Design and Analysis of Algorithms Backtracking

21

2-cliques: {1,2}, {1,3}, {4,5}, …
3-cliques: {1,2,3}, {1,4,5}
4-cliques: None
5-cliques: None

4

1

5 3

2

3-cliques: {1,2,3}, {5,3,4}, etc.
4-cliques: {1,2,3,4}, {1,2,3,5}, {2,3,4,5], …
5-clique: {1,2,3,4,5}

1

5

4 3

2

K-CLIQUES
-- UNIFORM REPRESENTATION --

Given a graph G(V,E) of n nodes, and a positive integer
k ≤ 𝑛𝑛

• A k-clique (of k nodes) can be represented by X[1:k]
where X[i] is the ith node of the clique

• 𝑆𝑆 = {1,2, … ,𝑛𝑛}: X[i] can be any of the nodes 1, 2, … , n.

• 𝐶𝐶:∀𝑖𝑖 ≠ 𝑗𝑗,𝑋𝑋 𝑖𝑖 ≠ 𝑋𝑋 𝑗𝑗 and 𝑋𝑋 𝑖𝑖 ,𝑋𝑋 𝑗𝑗 ∈ 𝐸𝐸

CS 6212 Design and Analysis of Algorithms Backtracking

22

N=k; S={1,2,…,n};
𝐶𝐶:∀𝑖𝑖 ≠ 𝑗𝑗𝑋𝑋 𝑖𝑖 ≠ 𝑋𝑋 𝑗𝑗 and 𝑋𝑋 𝑖𝑖 ,𝑋𝑋 𝑗𝑗 ∈ 𝐸𝐸
X [i] represents the ith node of the clique

K-COLORING
-- DEFINITION AND EXAMPLES --

• Given an undirected graph G (of 𝑛𝑛 nodes) and a positive
integer k ≤ 𝑛𝑛 of colors

• Definition: A k-coloring of G is an assignment of a color to
each node in such a way that every two neighboring nodes
have distinct colors, and the total number of colors used is ≤k.

CS 6212 Design and Analysis of Algorithms Backtracking

23

2-coloring: None
3-coloring: As shown in the picture

4

1

5 3

2

This graph has no 3-coloring, no 4-
coloring, but has a 5-coloring (as shown
in the figure)

1

5

4 3

2

K-COLORING
-- UNIFORM REPRESENTATION --

Given a graph G(V,E) of n nodes, and a positive integer
𝑘𝑘 ≤ 𝑛𝑛 of colors (we can label the colors 1, 2, …, 𝑘𝑘)

• A k-coloring of G can be represented by X[1:n] where
X[i] is the color of node i

• 𝑆𝑆 = {1,2, … ,𝑘𝑘}: X[i] can be any of the color1, 2, … , 𝑘𝑘.

• 𝐶𝐶:∀(i,j) ∈ E, X[i] ≠ X[j]

CS 6212 Design and Analysis of Algorithms Backtracking

24

N=n; S={1,2,…,k}; 𝐶𝐶:∀(i,j) ∈ E, X[i] ≠ X[j]
X [i] represents the color of node i

LESSONS LEARNED SO FAR

• Backtracking is for generating combinatorial objects in finite families

• Backtracking is more than a template/technique: it is an algorithm

• For many combinatorial families, we can represent the objects with a
uniform representation: (X[1:N], S, C). This allows having a shared
Backtracking algorithm

• Even when the natural representation is not 1D arrays, one can map the
natural representation to a 1D array so the Backtracking algorithm can
apply with minimum effort

• Constraints can be simplified if we reduce/eliminate representation-
redundancy (and thus inter-dependencies)

• More lessons to come

CS 6212 Design and Analysis of Algorithms Backtracking

25

BACKTRACKING ALGORITHM
-- PRELIMINARIES (1/3) --

• The algorithm will generate all valid arrays X[1:N] whose
elements come from the domain 𝑆𝑆 = 𝑎𝑎1, 𝑎𝑎2, … ,𝑎𝑎𝑚𝑚 of successive
integers, such that the constraints C are satisfied.

• The algorithm is a depth-first search like traversal (or
generation) of the tree that represents the entire solution space.

• In the tree:
• the root designates the starting point
• every path from the root to a leaf is of length N, where the node

in level i specifies a value for element X[i]
• The whole path corresponds to the whole array and represents

a single solution, that is, a single object.

CS 6212 Design and Analysis of Algorithms Backtracking

26

BACKTRACKING ALGORITHM
-- PRELIMINARIES (2/3) --

• During the generation of the tree, when we are to create a new
node corresponding to X[i], we try to assign X[i] the next domain
value (given the current value of X[i] as reference).

• If that value does not violate the constraints C, it is assigned.

• If, on the other hand, that value violates C, the next value after that is
tried, and so on until either a C-compliant value is found or all
remaining values are exhausted.

• If a C-compliant value is found and assigned to X[i], we move to the
next level to find a value for X[i+1].

• If no C-compliant remaining value is found for X[i], we backtrack (i.e.,
go back) to the previous level to find a new value for X[i-1].

CS 6212 Design and Analysis of Algorithms Backtracking

27

BACKTRACKING ALGORITHM
-- PRELIMINARIES (3/3) --

• When we backtrack to the root, the whole tree has been fully generated,
and the algorithm stops

• Whenever a C-compliant value for X[n] is found, a complete new object
has been generated, and the path from the root to that node
corresponding to X[n] is printed out as the object

• Recall that in the algorithm, when a new node for a new value for X[i] is
being generated, the values that are tried are the "next" values (in S)
from a reference value, which is the current value of X[i]

• To be consistent with the previous bullet, let the reference value at the
outset be initialized be a value 𝑎𝑎0 ≝ 𝑎𝑎1 − 1

• That way, the next value is always the reference (current) value + 1.

CS 6212 Design and Analysis of Algorithms Backtracking

28

ILLUSTRATION OF THE ALGORITHM
-- ON PERMUTATIONS OF SIZE 3 --

CS 6212 Design and Analysis of Algorithms
Backtracking 29

Start

X[1]=1

X[2]=1 X[2]=2

X[3]=1 X[3]=2 X[3]=3

X[2]=3

X[3]=1 X[3]=2 X[3]=3

X[1]=2

X[2]=1 X[2]=2 X[2]=3

X[3]=1 X[3]=2 X[3]=3 X[3]=1 X[3]=2 X[3]=3

X[1]=3

X[2]=1 X[2]=2 X[2]=3

X[3]=1 X[3]=2 X[3]=3

X[3]=1 X[3]=2 X[3]=3

Red nodes are dead-ends (violate C)
Green nodes are valid solutions
Blue nodes are valid intermediate nodes

BACKTRACKING ALGORITHM
-- THE PSEUDO-CODE--

CS 6212 Design and Analysis of Algorithms Backtracking

30

Procedure Backtrack()
begin

int r := 1; //r is the tree level, index of X
int X[1:N];
for i=1 to N do: X[i] := 𝒂𝒂𝟎𝟎; endfor // initialize X
while r > 0 do

getnext(X,r);
// assigns to X[r] its next C-compliant value,
// if available; else, it re-initlizes X[r] to 𝒂𝒂𝟎𝟎
if (X[r] == 𝒂𝒂𝟎𝟎) then

r := r-1; //backtrack to the previous level
elseif r==N then

print(X[1:N]); //a new complete solution
else
r := r+1; //move to the next level for X[r+1]

endif
endwhile

end // Backtrack

Procedure getnext(in/out: X[1:N]; in: r)
Begin

X[r] := X[r] + 1; // next tentative value
while (X[r] <= 𝒂𝒂𝒎𝒎) do

if (Bound(X[1:N],r) is true) then
return; // new value for X[r] is found

else // try the next value in S
X[r] := X[r] + 1;

endif
endwhile
// if getnext has not returned, that
// means no C-compliant remaining
// value was found. Re-initialize X[r]
X[r] := 𝒂𝒂𝟎𝟎;

end

• Bound(X[1:N],r) checks if the value of X[r] is
C-compliant, and if so, returns true

• Bound assumes X[1:r-1] are C-compliant
• The code for Bound varies from problem to

problem

WHAT YOU NEED TO DO WHEN SOLVING A
BACKTRACKING PROBLEM

1. Derive the uniform representation (X[1:N], S, C)
• Give the value of N
• Specify the domain S (i.e., give {𝑎𝑎1,𝑎𝑎2, … ,𝑎𝑎𝑚𝑚}), and 𝑎𝑎0
• Describe what every X[i] means/signifies
• Present the constraints C in a logical manner

2. Give the pseudocode for Bound(…)

3. Copy the code for Backtrack() and getnext(…),
replacing the values of N, 𝑎𝑎0, and 𝑎𝑎𝑚𝑚 by their
appropriate values

CS 6212 Design and Analysis of Algorithms Backtracking

31

THE BOUND FUNCTIONS FOR THE 8 PROBLEMS

• For each of our 8 combinatorial families,
• The model (X[1:N], S, C) has been given

• What remains is to give the Bound function

• We will do so next

CS 6212 Design and Analysis of Algorithms Backtracking

32

BOUND FOR THE FIRST 4 FAMILIS

• For the first 4 families (binary strings, subsets of a
given set, directed graphs, undirected graphs):

• 𝐶𝐶 = 𝜙𝜙 ⇒ there are no constraints to comply with

• Therefore, the Bound function should allows return true:

CS 6212 Design and Analysis of Algorithms Backtracking

33

Function Bound(X[1:N]; r)
begin

return true;
end Bound

• Binary Strings: N=n
• Subsets: N=n
• Directed Graphs: N=𝑛𝑛2

• Undirected graphs: N=𝑁𝑁 = 𝑛𝑛 𝑛𝑛−1
2

• For all four families: S={0,1}, 𝑎𝑎0 = −1,𝑎𝑎1 = 0,
𝑎𝑎2 = 1

BOUND FOR PERMUTATIONS

CS 6212 Design and Analysis of Algorithms Backtracking

34

N=𝑛𝑛; S={1,2,…,n}; X [i] represents f(i)
𝐶𝐶:∀𝑖𝑖 ≠ 𝑗𝑗, 𝑋𝑋 𝑖𝑖 ≠ 𝑋𝑋 𝑗𝑗
𝑎𝑎0 = 0,𝑚𝑚 = 𝑛𝑛, 𝑎𝑎𝑚𝑚 = 𝑛𝑛

Function Bound(X[1:n],r)
begin

// X[1:r-1] have C-compliant values. Bound checks to see if X[r] is C-compliant.
for i=1 to r-1 do

if X[r] == X[i] then // violates C: no two X values can be equal
return(false);

endif
endfor
// If we reach here without returning, the value of X[r] doesn’t violate C
return(true);

end Bound

BOUND FOR HAMILTONIAN CYCLES

CS 6212 Design and Analysis of Algorithms Backtracking

35

N=𝑛𝑛; S={1,2,…,n};
X [i] represents the ith node in the HC
𝐶𝐶:∀𝑖𝑖 ≠ 𝑗𝑗, 𝑋𝑋 𝑖𝑖 ≠ 𝑋𝑋 𝑗𝑗 ; ∀𝑖𝑖 𝑋𝑋 𝑖𝑖 ,𝑋𝑋 𝑖𝑖 + 1 ∈ 𝐸𝐸; 𝑋𝑋 𝑛𝑛 , 𝑋𝑋 1 ∈ 𝐸𝐸
𝑎𝑎0 = 0,𝑚𝑚 = 𝑛𝑛, 𝑎𝑎𝑚𝑚 = 𝑛𝑛

Function Bound(X[1:n],r)
begin

// X[1:r-1] have C-compliant values. Bound checks to see if X[r] is C-compliant.
// next, check for violations that could be incurred by X[r]
for i=1 to r-1 do

if X[r] == X[i] then return(false); endif
endfor
if (r > 1 and (X[r-1],X[r]) is not an edge) then return(false); endif
if (r==n and (X[n],X[1]) is not an edge) then return(false); endif
return(true) ;

end Bound

BOUND FOR K-CLIQUES

CS 6212 Design and Analysis of Algorithms Backtracking

36

N=𝑛𝑛; S={1,2,…,n};
X [i] represents the ith node in the HC
𝐶𝐶:∀𝑖𝑖 ≠ 𝑗𝑗, 𝑋𝑋 𝑖𝑖 ≠ 𝑋𝑋 𝑗𝑗 and 𝑋𝑋 𝑖𝑖 ,𝑋𝑋 𝑗𝑗 ∈ 𝐸𝐸;
𝑎𝑎0 = 0,𝑚𝑚 = 𝑛𝑛, 𝑎𝑎𝑚𝑚 = 𝑛𝑛

Function Bound(X[1:n],r)
begin

// X[1:r-1] have C-compliant values. Bound checks to see if X[r] is C-compliant.
// next, check for violations that could be incurred by X[r]
for i=1 to r-1 do

if (X[r] == X[i] or (X[r],X[i]) is not an edge) then
return(false);

endif
endfor
return(true) ;

end Bound

BOUND FOR K-COLORING

CS 6212 Design and Analysis of Algorithms Backtracking

37

N=𝑛𝑛; S={1,2,…,k};
X [i] represents the color of node i
𝐶𝐶:∀(i,j) ∈ E, X[i] ≠ X[j]
𝑎𝑎0 = 0,𝑚𝑚 = 𝑘𝑘,𝑎𝑎𝑚𝑚 = 𝑘𝑘

Function Bound(X[1:n],r)
begin

// X[1:r-1] have C-compliant values. Bound checks to see if X[r] is C-compliant.
// next, check for violations that could be incurred by X[r]
for i=1 to r-1 do

if ((r,i) is an edge and X[r] == X[i]) then
return(false);

endif
endfor
return(true) ;

end Bound

LESSONS LEARNED SO FAR
• Backtracking is for generating combinatorial objects in finite families

• Backtracking is more than a template/technique: it is an algorithm

• For many combinatorial families, we can represent the objects with a uniform
representation: (X[1:N], S, C). This allows having a shared Backtracking algorithm

• Even when the natural representation is not 1D arrays, one can map the natural
representation to a 1D array so the Backtracking algorithm can apply with minimum
effort

• Constraints can be simplified if we reduce/eliminate representation-redundancy (and
thus inter-dependencies)

• The uniform representation and the Bound function are all you need to do for a new
Backtracking problem

• The simpler the constraints are, the easier and the simpler the Bound function is

CS 6212 Design and Analysis of Algorithms Backtracking

38

OTHER BACKTRACKING PROBLEMS

• Generate all directed graphs of n nodes and p edges

• Generate all regular undirected n-node graphs of degree d (where
regular means that all the nodes have the same degree), for a given n
and d

• Generate all undirected n-node graphs where the degree of every node
is ≤ d, for a given n and d

• Generate k-letter strings, for a given k, where each letter is any of the 26
lower case English letters

• Generate k-digit numbers where the k digits are in strictly increasing
order (meaning that the ith digit is < then the digit after it, for all i)

CS 6212 Design and Analysis of Algorithms Backtracking

39

NEXT LECTURE

• Branch and Bound

• A last-resort optimization technique

CS 6212 Design and Analysis of Algorithms Backtracking

40

	CS 6212 Design and Analysis of Algorithms��Lecture: Backtracking
	Objectives of this Lecture
	Outline
	Backtracking�-- background and definition --
	Examples of combinatorial Families/objects
	Fine points�-- non-combinatorial families/Objects --
	Backtracking�-- definition and purpose --
	Note on backtracking time complexity
	Algorithm, not template
	Uniform representation of�Combinatorial Objects
	Binary strings
	Subsets of a given set
	directed graphs
	directed graphs
	undirected graphs
	undirected graphs�-- a constraint-free representation --
	Permutations
	Permutation representation
	Hamiltonian cycles�-- definition and examples --
	Hamiltonian cycles�-- uniform representation --
	K-cliques�-- definition and examples --
	K-cliques�-- uniform representation --
	K-coloring�-- definition and examples --
	K-coloring�-- uniform representation --
	Lessons learned so far
	Backtracking algorithm�-- preliminaries (1/3) --
	Backtracking algorithm�-- preliminaries (2/3) --
	Backtracking algorithm�-- preliminaries (3/3) --
	Illustration of the Algorithm�-- on permutations of size 3 --
	Backtracking algorithm�-- the pseudo-code--
	What you need to do when solving a backtracking problem
	The bound functions for the 8 problems
	Bound for the first 4 familis
	Bound for permutations
	Bound for Hamiltonian cycles
	Bound for k-cliques
	Bound for k-coloring
	Lessons learned so far
	Other backtracking problems
	Next Lecture

